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a b s t r a c t

Weather forecast ensembles are commonly used to assess the uncertainty and confidence of weather
predictions. Conventional methods in meteorology often employ ensemble mean and standard devia-
tion plots, as well as spaghetti plots, to visualize ensemble data. However, these methods suffer from
significant information loss and visual clutter. In this paper, we propose a new approach for uncertainty
visualization of weather forecast ensembles, including isovalue selection based on information loss and
hierarchical visualization that integrates visual abstraction and detail preservation. Our approach uses
non-uniform downsampling to select key-isovalues and provides an interactive visualization method
based on hierarchical clustering. Firstly, we sample key-isovalues by contour probability similarity and
determine the optimal sampling number using an information loss curve. Then, the corresponding
isocontours are presented to guide users in selecting key-isovalues. Once the isovalue is chosen, we
perform agglomerative hierarchical clustering on the isocontours based on signed distance fields and
generate visual abstractions for each isocontour cluster to avoid visual clutter. We link a bubble tree to
the visual abstractions to explore the details of isocontour clusters at different levels. We demonstrate
the utility of our approach through two case studies with meteorological experts on real-world data.
We further validate its effectiveness by quantitatively assessing information loss and visual clutter.
Additionally, we confirm its usability through expert evaluation.

© 2025 The Authors. Published by Elsevier B.V. on behalf of ZhejiangUniversity and ZhejiangUniversity
Press Co. Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Ensemble forecasting involves generating multiple weather
predictions (i.e., ensemble members) to represent various possi-
ble future atmospheric states (Leutbecher and Palmer, 2008). This
s achieved by utilizing different mathematical prediction models,
perturbed initial conditions, varying spatial resolutions, or differ-
nt vertical coordinate systems (Ferstl et al., 2017; De Souza et al.,

2023). These ensemble members provide valuable information
bout the probability distribution of forecasted fields, which aids
n assessing weather variability. Over the past decades, ensemble
orecasting has become widely used for evaluating the reliabil-
ty of weather predictions. Given the extensive scale and high
omplexity of ensemble forecast data, visualization plays a crucial
role in effectively conveying the uncertainty and confidence as-
ociated with these predictions (Ma and Entezari, 2019; Liu et al.,
2019; Kumpf et al., 2019; Kamal et al., 2021).

Since ensemble isocontours of different isovalues exhibit dif-
erent variability behaviors, it is essential to select interesting
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isovalues that provide the most useful information for subse-
quent specific isocontour analysis (Wang, 2020). The conven-
tional method for isovalue selection in weather forecasting relies
on the utilization of the ensemble mean and standard deviation
plot. This plot employs the contours of the ensemble mean as a
epresentation of the ensemble and maps the standard deviation
f each grid point to a gradient background color (Sanyal et al.,

2010). However, the standard deviation could be misleading for
egions with large gradients, since small displacements of mem-
bers can lead to a large standard deviation. Alternatively, several
studies assisted users in selecting isovalue by extracting a limited
number of representative isocontour samples (Ma and Entezari,
2019; Zhang et al., 2021). However, these approaches have not
taken into account the controllability of the information loss
between the sampled results and the original ensemble, resulting
in the possibility of missing key contour structures.

Once the isocontour of interest has been chosen, the atten-
tion shifts towards examining the variability of isocontours. A
commonly employed technique for this purpose is the spaghetti
plot. This technique involves overlaying the isocontours of each
ensemble member onto a single view, all based on the same iso-
value (Rautenhaus et al., 2018). It invariably results in visual clut-
ter when dealing with a large size of ensemble members, making
it challenging for observers to distinguish between isocontours
sity and Zhejiang University Press Co. Ltd. This is an open access article under the
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of different members (Ma and Entezari, 2019). Therefore, in re-
cent years, there have been efforts to improve spaghetti plots
and explore visual abstraction. Sanyal et al. (2010) quantified
nsemble uncertainty by utilizing member standard deviation,
nter-quartile range, and the width of the 95% confidence interval.
hey then represented these measures using gradient-colored
ircular glyphs. Ferstl et al. (2016b) performed clustering anal-
sis on ensemble isocontours and introduced confidence bands
ased on signed distance functions to convey the major trends
nd outliers in a set of isocontours. These methods reduce the
isual clutter of spaghetti plots while providing a summary of the
ariability information. However, they sacrifice the capability to
irectly examine the original isocontours and entail the loss of
etails within the isocontours (Viola et al., 2020). Striking a bal-

ance between managing visual clutter and preserving important
details poses an urgent problem that requires attention.

Several attempts have been made to address the above sit-
ations. The work conducted by Ma and Entezari (2019) may
e the closest to ours. They performed clustering on the en-
emble isocontours of each isovalue and displayed top-ranked
socontours of all significant hierarchies to guide meteorologi-
al experts in selecting isovalues for visual analysis. However,
hey did not downsample the value range of isovalues to iden-
ify key-isovalues with representative contour structures, nor did
hey take into account the potential impact of information loss.
n terms of hierarchical exploration, they generalized the high-
ensity clustering for isocontours, representing the hierarchy of
he density function as a hierarchy of nested subsets of the
nsemble data. This hierarchy was then visualized as a mode
lot linked with spaghetti plots. Nonetheless, the mode plot not
nly failed to provide an overview of the hierarchy, but it also
id not allow users to flexibly switch between the overview
nd any cluster level to explore detailed information about the
nsemble isocontours. Additionally, the linked spaghetti plots did
ot integrate the confidence band, and only performed filtering
nd display of isocontours, resulting in poor performance when
any isocontours need to be displayed.
To address these issues, we propose a novel approach for

ey-isovalue selection guided by contours and hierarchical ex-
loration of isocontour clusters in weather forecast ensembles.
ur approach enables a comprehensive analysis process of en-
emble isocontours, from the key-isovalue selection that controls
nformation loss to the isocontour band visualization that re-
uces visual clutter. Our approach first extracts representative
socontours through non-uniform downsampling and calculates
he information loss under different sampling numbers to de-
ermine the optimal sampling number. This ensures controllable
nformation loss. Leveraging the displayed key contour struc-
ures, variability range of contours, and their spatial distribution,
ur approach offers guidance for selecting the desired isovalue.
nce the isovalue is selected, our method performs hierarchi-
al clustering on ensemble isocontours, allowing for interactive
ustomization of the clustering hierarchy to account for the vary-
ng dispersion of the ensemble data at different time-steps. To
educe visual clutter, we construct a visualization of isocon-
our clusters, the isocontour bands, and employ an interactive
ubble tree to depict the hierarchical structure of the clusters.
his enables hierarchical exploration of isocontour clusters. To
valuate the utility, effectiveness, and usability of our approach,
e conduct case studies using real-world data. We also perform
uantitative assessments of information loss and visual clutter.
dditionally, we conduct interviews with domain experts. The
esults demonstrate that our approach effectively guides the key-
sovalue selection while preserving the essential information of
he original ensemble isocontours. It also facilitates interactive
ierarchical exploration of isocontour clusters with less visual
59
clutter, assisting meteorological experts in intuitively exploring
and analyzing the uncertainty and confidence of ensemble data.

The contributions of this paper include:

• Key-isovalue selection guided by contours: We propose
a non-uniform downsampling approach based on contour
probability similarity to assist users in selecting representa-
tive isocontours. We utilize contour probability to represent
the uncertainty of isocontours and assess representative-
ness based on differences in probability distributions. We
quantify the information loss caused by sampling and make
it controllable by automatically determining the optimal
sampling number through the information loss curve.

• Hierarchical exploration of isocontour clusters: We reduce
visual clutter caused by the increasing size of ensemble
members through the visual abstraction of isocontour clus-
ters. We link a bubble tree that represents the clustering
hierarchy to the visual abstraction, allowing for interactive
and flexible switching between different levels of detail
when observing isocontours. We enable customization of
the hierarchical structure to present ensemble isocontours
at different dispersions.

2. Related work

The multivalued nature of ensemble data, generated by vari-
us prediction models with different settings, introduces inherent

uncertainty, making ensemble visualization a specific category
within uncertainty visualization (Kamal et al., 2021). In recent
years, ensemble visualization has gained significant traction in
meteorology (Rautenhaus et al., 2018), playing a pivotal role
in assisting meteorological experts to develop a more intuitive
understanding of ensemble weather forecasts (Wang et al., 2019).
Obermaier and Joy (2014) classified ensemble visualization into
two main categories: feature-based and location-based methods.
ur approach is a feature-based method that focuses on iso-

contours in scalar fields. We extract features (i.e., isocontours)
rom individual ensemble members and compare them across the
nsemble. In this section, we provide a comprehensive review of
he most relevant literature to our work.

Isocontour is a crucial feature in 2D scalar fields, allowing
esearchers to represent the uncertainty and confidence of en-
sembles of scalar fields by showcasing the contour structure
and variation range of the isocontours. The spaghetti plot is the
only conventional visualization technique that directly exam-
ines the isocontour distribution behavior of all ensemble mem-
bers (Quinan and Meyer, 2016). Plotting isocontours for all en-
emble members on a single plane leads to significant visual
lutter, making spaghetti plots challenging to parse (Ma and En-
tezari, 2019). To improve spaghetti plots, Pfaffelmoser and West-
rmann (2012) employed a special background and foreground

color mapping strategy to enhance the observer’s capability to
ifferentiate topological differences in isocontours with different
rends. However, this method is only effective for a small number
f trends and still suffers from visual clutter interference. An
lternative approach is to utilize the visual abstraction technique.
or example, Sanyal et al. (2010) employed gradient-colored cir-

cular glyphs to encode the statistical distribution of the ensemble
at various locations in the spatial domain and created an abstract
contour band visualization by placing these glyphs along the iso-
contours of the ensemble mean. While this method can depict the
summarization of confidence regions for isocontours, it sacrifices
the detailed geometric information of individual isocontours by
relying solely on the ensemble mean.

Subsequent research has further explored the visual abstrac-
tion technique. Whitaker et al. (2013) introduced the concept
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of contour boxplots, which extend different types of confidence
and regions based on statistical band depth to demonstrate the
ariability of isocontours. Mirzargar et al. (2014) further extended
his approach to visualize curve sets such as streamlines and
rajectories. Ferstl et al. (2016b) developed contour variability
plots, which treat the signed distance field of the isocontours
as data points in high-dimensional space and generate statistical
confidence ellipses. They then map the mean and standard devi-
ation back to the contour cluster band for visualization. Kumpf
t al. (2018) designed contour probability plots, which calculate
he percentage of ensemble members above a set isovalue at
each point in the scalar field, resulting in a contour band vi-
sualization with more confidence intervals. Building upon these
previous studies, Zhang et al. (2023) proposed a unified frame-
work of ensemble contour visualization, incorporating member
filtering, point-wise modeling, uncertainty band extraction, and
visual mapping. These approaches effectively reduce visual clutter
through visual abstraction and convey the major trends, out-
liers, and other variability information of ensemble isocontours
in terms of geometric shape and spatial location. However, it is
important to note that visual abstraction comes at the cost of
losing detailed information (Viola et al., 2020). To address this
issue, our approach links a bubble tree to visual abstractions to
explore detailed information about isocontour bands or original
isocontours at different levels of hierarchy.

While previous research on visualizing ensemble isocontours
as typically assumed that expert users possess prior knowledge
f the isovalues of interest and then analyze the extracted iso-
ontours (Ferstl et al., 2017; Sanyal et al., 2010; Ferstl et al.,
2016b; Quinan and Meyer, 2016; Whitaker et al., 2013; Kumpf
t al., 2018; Zhang et al., 2023), it may not be the case. Thus,
tudies are conducted to guide users in selecting interesting iso-
alues based on the numerical distribution and contour features
f the ensemble data. Sanyal et al. (2010) utilized ensemble
ean and standard deviation plots to assist users in clicking on
oints of interest and selecting the isovalues corresponding to
he ensemble mean at those points. However, the point-wise
computed standard deviation may not fully reflect the variability
f the ensemble isocontours (Zhang et al., 2021). Hazarika et al.

(2018) calculated the predictability and surprise of individual
sovalues based on conditional entropy and visualized it in a
catter plot, but representing the original contours as scatter
oints may lack intuitiveness. Some other studies guide users
n isovlaue selection by filtering and displaying a small number
f representative isocontours. Ma and Entezari (2019) clustered
he ensemble isocontours corresponding to each isovalue and se-
lected all significant mode samples for display, while Zhang et al.
(2021) selected a few isovalues based on their proposed variable
spatial spreading for visualization. However, these methods do
not assess the representativeness of the selected small samples
across all possible isovalues, which can lead to the omission of
key contour structures (i.e., the loss of important information),
potentially affecting the subsequent analysis process. In contrast,
ur approach applies the range likelihood field, proposed by He
t al. (2017), to calculate contour probability similarity, which
e use to prioritize isovalue selection. Based on this, we per-

form non-uniform downsampling to obtain key-isovalues and
calculate the information loss for different sampling numbers,
thereby assessing the representativeness of the selected samples.
In this regard, we argue that our method advances the process
by guiding users in selecting key-isovalues with consideration of
information loss.

To sum up, we focus on the information loss in isovalue selec-
ion and the visual clutter in contour visualization. We design a
isual analysis method to support guided isovalue selection and
nteractive visual exploration of weather forecast ensembles.
60
3. Method overview

During the design process of this paper, we conduct inter-
views with three experts (P1–P3) from the meteorological ad-
ministration over five months. P1, a forecaster with 11 years
f experience, and P2 and P3, meteorologists specializing in en-

semble forecasting for 14 and 22 years, respectively. Throughout
the design process, we conducted regular half-monthly meetings
with the experts, where we presented them with the latest ideas
and design details for their feedback on potential enhancements,
which have significantly contributed to our work. The workflow
and visualization provided by our approach are illustrated in
Fig. 2. Next, we provide a high-level description of our method.

Our approach starts with an ensemble s[1:T ]

1 , . . . , s[1:T ]

N ∈ RM×T

f N 2D time-dependent scalar forecast fields, representing the
volving weather states over T time-steps. Subscripts and super-

scripts, respectively, denote the ensemble member and time-step.
All ensemble members are defined on the same grid structure,
e.g., longitude-latitude grid, with M grid points. For a prescribed
forecast time-step t , the subsets st1, . . . , s

t
N ∈ RM are treated as N

single elements as illustrated in Fig. 2(a).
The value range of subsets st1, . . . , s

t
N is divided into L intervals

quidistantly, and L contour probabilities (Fig. 2(b2)) correspond-
ng to each interval isovalue are extracted using kernel density
stimation (Fig. 2(b1)). To reduce visual clutter, downsampling

(Fig. 2(b4)) is then performed based on the similarity (Fig. 2(b3))
between these L contour probabilities. This process selects S
ey-isovalues that possess distinctive and representative contour
tructures. The optimal sampling number, S, is automatically
etermined based on the information loss incurred during down-
ampling. Subsequently, the ensemble isocontours corresponding
o the S key-isovalues are obtained and used to construct a
paghetti plot set as illustrated in Fig. 2(b5). To avoid overlap
and interference among the isocontours of adjacent isovalues, we
control the number of spaghetti plots according to S, conveying
intuitive visual information to users and providing guidance for
their selection of isovalues.

After the selection of isovalues, we proceed to extract the
signed distance fields (Fig. 2(c1)) for each ensemble member.
Considering computation speed, we employ agglomerative hier-
archical clustering (Fig. 2(c2)) to construct a hierarchical cluster
tree. To address the dispersion of ensemble isocontours increase
as the forecast time progresses (Leutbecher and Palmer, 2008),
as well as to simplify the hierarchical exploration of isocon-
tour clusters (Fig. 2(c3)), we provide users with the flexibility to
ustomize the number of leaf node clusters and the number of
branches per level. Then, we generate visual abstractions for each
cluster of different levels. By merging the signed distance fields
of each member of the cluster, we obtain abstract isocontour
bands that provide a summarized visualization. These isocontour
bands depict the spatial distribution range and the variability
information of the isocontours within each cluster, including their
mean, standard deviation, and spatial position. Additionally, we
utilize a bubble tree to represent the hierarchical structure of the
clusters, which is linked to the isocontour bands, as illustrated
in Fig. 2(c4). Users can navigate between different cluster levels
by interacting with the bubble tree, and the isocontour bands at
varying levels will be reconstructed and presented accordingly.

Fig. 1 shows a screenshot of the method in use. Users can
interactively modify the forecast time-step, the number of en-
semble members, and the geographical region for re-analysis
within the main interface. Furthermore, users can add multiple
sub-interfaces for key-isovalue selection and hierarchical explo-
ration of isocontours. To facilitate precise coordinate selection
or any geographical point, synchronized latitude and longitude
coordinate pickers are available in multiple views, as illustrated
in Fig. 3.
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Fig. 1. Key-isovalue Selection and Hierarchical Exploration Visualization of Weather Forecast Ensembles: After determining the basic parameters (left), users can
select isovalue based on the downsampled isocontours (top right). The hierarchical information of isocontour clusters extracted from the selected key-isovalue is
displayed as a bubble tree and can be interactively explored with the isocontour bands (bottom middle). Users can customize the hierarchical structure parameters
for isocontour clusters with different dispersions (bottom right).
Fig. 2. Method overview. (a) Scalar forecast field ensembles. (b) Kernel density estimation of weather forecast ensembles, extraction of contour probability,
ownsampling based on the dissimilarity matrix, and visualization of the sampling results to assist users in selecting the corresponding key-isovalue. (c) Extraction of

signed distance fields based on the selected isovalue, hierarchical clustering of the ensemble members, simplification of the hierarchical cluster tree, and hierarchical
exploration of isocontour clusters by linking the bubble tree to the isocontour bands.
Fig. 3. Latitude and longitude coordinate pickers with linked displays between different views.
t

n

4. Key-isovalue selection

To obtain representative isocontours from ensemble data, it
s a conventional practice to employ downsampling techniques
onsidering the variability features (Liu et al., 2017). However, a
igher sampling number may lead to substantial overlap among
ifferent isocontours, thereby reducing selection efficiency. Con-
ersely, reducing the sampling number may result in the omis-
ion of key contour structures, consequently increasing infor-
mation loss. To strike a balance between selection efficiency
nd information preservation, we propose a new approach for

key-isovalue selection based on the downsampling of contour
probability as illustrated in Fig. 2(b).
61
In the following, we describe the calculation for the similarity
between contour probabilities extracted for each isovalue (Sec-
ion 4.1). This similarity serves as a measure of the degree to
which the contour structure of one isovalue can be represented
by the contour structure of other isovalues. By leveraging this
similarity, we implement a downsampling technique for selecting
key-isovalues (Section 4.2). To ensure that no significant contour
structures are missed, we evaluate the information loss across
various sampling results and determine the optimal sampling
umber to be taken (Section 4.3). We then visualize the ensem-

ble isocontours corresponding to the final selected key-isovalues
(Section 4.4).
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4.1. Calculation of contour probability similarity

Inspired by the studies of He et al. (2017) and Pothkow and
ege (2011), we commence by extracting the contour proba-
ilities associated with each isovalue to analyze the similarity
mong various isovalues within a set of scalar fields. For a pre-
cribed forecast time-step t , given a set of 2D scalar forecast fields
t
1, . . . , s

t
N ∈ RM , and for any grid point g with scalar values

= {x1, . . . , xN} obtained from different ensemble members,
e employ the following function to perform kernel density
stimation:

fh(g; x) =
1
Nh

N∑
i=1

K
(
x − xi

h

)
where K is a smooth function called the kernel function, and
n this case, we use the standard normal distribution. For the
bandwidth h which governs the level of smoothness, we follow
the research recommendation by Pöthkow and Hege (2013) and
mploy Silverman’s rule of thumb as an automatic bandwidth
election strategy.
Given L equidistant intervals Γ1, Γ2, . . . , ΓL that partition the

value range of the scalar field, we designate the median of each
nterval as a candidate isovalue. For each interval Γi, i = 1, . . . , L,
he cumulative probability value at each grid point g is calculated
y the range likelihood field as

LX (g; Γi) =

∫
Γi

fX (g; x)dx.

We obtain a set of contour probabilities c1, . . . , cL ∈ RM , each
f which forms a scalar field. In this scalar field, each grid point
s assigned a scalar value, which indicates the probability of
nsemble isocontours passing through that specific point for a
iven isovalue. Determining an appropriate partition number, L,
or the value range, is important. Insufficient partition (small L)
ay lead to the inability to separate significant features, while
xcessive partition (large L) results in increased computing and
torage costs. Following the study by He et al. (2017), we set L to
56 to strike a balance between accuracy and costs.
To quantify the similarity between two contour probabilities,

e assess the similarity of their distributions. This involves scal-
ing the likelihood values of each grid point within the contour
probability, treating them as distributions with the grid point g
as a random variable. The process is

X̂ (g; Γi) =
LX (g; Γi)∫

G LX (g; Γi) dg

where G is the set of all grid points. The Jensen–Shannon di-
vergence between contour probability distributions is calculated,
esulting in a dissimilarity matrix DSM . Dissimilarity and similar-
ity are relative, and the similarity matrix SM can be obtained by
SM = 1−DSM . To obtain the dissimilarity curve DSC , we compute
the column-wise mean of DSM as

DSC(i) =
1
L

L∑
j=1

DSM(i, j).

By employing the same step, we calculate the similarity curve
C . The DSC provides an overview of the average dissimilarity
etween each contour probability and all other contour proba-
ilities. Crests in the curve indicate the contour probabilities that
xhibit the least similarity to the others, while troughs represent

the most similar contour probabilities.
 t

62
4.2. Non-uniform downsampling

To ensure the selection of the S most representative samples
from L isovalues, we employ non-uniform downsampling based
on the DSC . Uniform downsampling techniques may skip iso-
values that reflect important features and select some isovalues
with a high local similarity that contain redundant information.
Drawing inspiration from Bruckner and Möller (2010), who pro-
posed a method for selecting representative isosurfaces based on
similarity, we design a downsampling approach, which involves
the following two steps:

Partitioning intervals based on the dissimilarity curve: We
calculate the total area between the DSC and the X-axis and
ivide it by the desired number S of representative samples. This
ields the unit interval area. We then divide the range of isovalues
nto S intervals, each with an equal area based on the unit interval
area.

Selecting key-isovalues: We use SC as the initial priority
function for selecting each isovalue. We scan through all available
intervals and choose the isovalue r with the highest priority as
the representative isovalue for its corresponding interval. Once r
s selected, we penalize the priority of all other isovalue samples
based on their similarity to r as

pi =
pi

1 + SM(r, i)
.

We mark the interval containing the selected sample r as un-
available and proceed to the next scan until S isovalues are
selected.

From a global perspective, the above downsampling approach
prioritizes more sampling in intervals characterized by higher
dissimilarity, thereby ensuring the selection of a greater number
of unique contour structures. Within each interval, the most
representative sample is chosen. Furthermore, the inclusion of
penalization measures reduces the likelihood of selecting samples
that can be adequately represented by already selected sam-
les, while increasing the probability of selecting distinct contour

structures.

4.3. Determination of sampling number

It is important to minimize the sampling number S while
nsuring information quality to reduce sampling of redundant
sovalues and to increase the selection efficiency.

Firstly, we need to quantify the information loss associated
ith different sampling numbers. We adopt the information loss
alculation method proposed by Zhou and Chiang (2018), which
measures the difference between the interpolated reconstructed
data after downsampling and the original data. Assuming isovalue
i and isovalue j are selected while skipping the isovalues in
between, the information loss can be calculated as

Loss(i, j) =

∑
i<r<j

Diff r =

∑
i<r<j

RMSE
(
cr ; c ′

r

)
where c ′

r is the contour probability obtained by interpolating ci
nd cj, and RMSE represents the root mean square deviation.
y computing the information loss for all skipped isovalues, we
btain the total information loss

Losstotal =

∑
r is skipped

Diff r .

Here, we assume that the first and last samples are always se-
lected for interpolating and reconstructing all the skipped isoval-
ues.

Next, we iterate S from 3 to L/2 and obtain the informa-
ion loss curve. With each increase in sampling number, the
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Fig. 4. Determination of sampling number. The correspondence between information loss and sampling number is plotted as a curve, and the appropriate sampling
number is determined using the L-method.
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downsampling algorithm selects a sample aiming to maximize
information gain. The information loss curve exhibits an initial
sharp decrease followed by a leveling off, resembling the shape
f the letter L. To determine the optimal sampling number, we
mploy the L-method (Salvador and Chan, 2004). This method

fits two straight lines to approximate the L-shaped curve, and the
intersection of these lines indicates the turning point where the
curve transitions from a steep decrease to a flattening trend. This
turning point determines the appropriate sampling number, S, as
illustrated in Fig. 4.

4.4. Visualization

We extract the ensemble isocontours corresponding to the se-
ected S key-isovalues to construct spaghetti plots. The spaghetti
lot provides visual information regarding the geometric struc-

ture, spatial distribution, and variability range of the ensemble
socontours, assisting users in selecting key-isovalues.

The specific procedure for constructing the spaghetti plots is as
ollows: To ensure the visual effect of the spaghetti plot, each plot
only displays R isovalues, resulting in a set of spaghetti plots. For
nstance, when S = 30 and R = 10, we obtain three (S/R) plots
here the plot i displays the ensemble isocontours corresponding
o isovalues {0+ i, 3+ i, . . . , 27+ i}. Based on experimental trials
nd expert suggestions, we set R = 10 when S > 30 and R = S/3

when S < 30. Different ensemble isocontours are distinguished
using a predefined set of color encodings. Since the spaghetti plot
involves multiple visual elements overlapping with each other,
interactive feedback is supported to convey specific information.
When the user hovers the mouse cursor over a contour struc-
ture of interest, the corresponding ensemble isocontours will be
highlighted, while the others will be grayed out. Additionally, a
numerical tooltip will display the corresponding isovalue.

While ensemble mean and standard deviation plots have lim-
itations in guiding the selection of isovalues, they can be used
to understand the distribution of data and assess data quality.
herefore, we provide the ensemble mean and standard deviation
lot alongside the spaghetti plots for users.

5. Hierarchical exploration visualization

As the size of ensemble members increases, the spaghetti plot
suffers from significant visual clutter. To address this limitation,
visual abstraction is commonly introduced. However, the draw-
back of visual abstraction is the loss of detailed information. To
overcome visual clutter while still preserving the capability to ex-
plore isocontour details, we propose a hierarchical exploration of
socontour clusters visualization method based on agglomerative
ierarchical clustering illustrated in Fig. 2(c).
In the following, we describe the agglomerative hierarchi-

al clustering on ensemble isocontours extracted from selected
sovalue, resulting in a binary hierarchical tree (Section 5.1).
To accommodate ensemble isocontours with different disper-
sions and to optimize the interactive experience, we simplify
 e
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the hierarchical tree based on specified parameters (Section 5.2).
Subsequently, visual abstractions for isocontour clusters at each
evel are generated (Section 5.3), which are linked with a bubble
tree to create the final visualization (Section 5.4).

5.1. Agglomerative hierarchical clustering

Given a set of 2D scalar fields st1, . . . , s
t
N ∈ RM at a specific

orecast time-step t , after confirming the isovalue, we extract
he isocontours corresponding to the selected isovalue (i.e., the
elected isocontours) from each ensemble member. To facilitate
lustering and visual abstraction, we utilize the dead reckoning
lgorithm (Grevera, 2004) to compute the signed distance fields

d1, . . . , dN ∈ RM for the selected isocontours. Each di, i =

, . . . ,N can be represented as a point in a high-dimensional
uclidean space RM .
Agglomerative hierarchical clustering is a commonly used

method in visualizations involving line features, such as stream-
lines (Yu et al., 2012) and diffusion tensor imaging fiber bun-
dles (Moberts et al., 2005). For constructing a cluster structure
o enable hierarchical exploration of detailed information, we
pply the agglomerative hierarchical clustering method proposed
y Ferstl et al. (2016b,a) on the previous signed distance fields.

Considering that variance is an important metric for meteoro-
logical experts to assess forecast uncertainty, we adopt Ward’s
method (Ward, 1963) in clustering to calculate the distance
etween clusters, specifically the increase in the sum of squared
rrors when two clusters are merged into one. We treated each
igned distance field di, i = 1, . . . ,N as an initial cluster and
teratively merged the two most similar clusters (i.e., the two
lusters with the closest distance) until the total number of
lusters met the stopping criterion.
The result of agglomerative hierarchical clustering is a binary

hierarchical tree. At each non-leaf tree node, we record the inter-
cluster distance between its two child nodes to simplify the
hierarchical tree in subsequent steps.

5.2. Hierarchical tree simplification

Directly using the binary tree as a guide for hierarchical explo-
ation, displaying only two isocontour clusters per level would
ncrease the interaction cost for users to access information.
oreover, showing too many isocontour clusters per level can

esult in visual clutter. Therefore, determining the optimal num-
er of isocontour clusters to display per level is a trade-off.
his quantity is challenging to determine through quantitative
alculations due to the uncertainty of subjective perception and
he unpredictability of contour features.

Ensemble members tend to be more concentrated in the early
orecast time, leading to overlapping clusters when displaying too
any clusters. Conversely, in the late forecast time, ensemble
embers tend to be more dispersed, requiring the display of
ore clusters. Through in-depth discussions with meteorological
xperts, we have introduced two customizable parameters: the
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number of leaf node clusters Ncluster and the number of branches
er level Nbranch to simplify the hierarchical tree. Firstly, based on
he recorded inter-cluster distances from the previous section,
e iteratively merge the closest leaf nodes of the hierarchical
ree to achieve the desired Ncluster . Then, we traverse the binary
ierarchical tree, iteratively replacing the non-leaf child nodes
hat have the farthest inter-cluster distance with their two child
nodes, until the number of branches per level reaches Nbranch. This
rocess allows us to obtain a hierarchical tree with a control-
able number of leaf nodes and branches at each level, which is
more suitable for interactive exploration. The default values for
cluster and Nbranch are set to 25% of the total number of ensemble
embers and 3, respectively.

5.3. Generation of visual abstractions

To abstractly summarize isocontour clusters and convey visual
nformation about variability, we utilize a smooth isocontour
and visual element created by merging the signed distance fields
ithin each cluster.
Literature (Ferstl et al., 2016b) derived a generation method

or the visual abstraction of isocontour clusters based on the
aussian model. For cluster k, we calculate the mean µk ∈ RM

and the diagonal of covariance matrix Σk ∈ RM×M of the signed
istance field to generate an abstract isocontour band

Bk = CMIN
{
−

(
µk − α

√
DIAG (Σk)

)
, µk + α

√
DIAG (Σk)

}
where α is the scaling factor that controls the width of the
contour band and is set to 1. The CMIN operator represents the
minimum operation applied to each grid point, while DIAG rep-
resents the diagonal operation. The resulting Bk ∈ RM is a scalar
field with M grid points. In Bk, the isocontour corresponding to
isovalue 0 is the mean isocontour, values greater than 0 represent
the interior of the isocontour band, and values smaller than 0
represent the exterior of the isocontour band.

5.4. Visualization

We visualize the isocontour bands that represent the structure
f each level in the hierarchical clustering tree. We utilize a bub-
le tree to provide an overview of the hierarchical distribution of
nsemble isocontours. We link the bubble tree and the isocontour
ands to facilitate interactive exploration of isocontour clusters at

different levels or the original isocontours.
To obtain the visual abstraction element of the isocontour

and, we apply a color mapping to the interior region of the
socontour band and emphasize the color representation of the
ean isocontour.
In terms of the hierarchical tree, effectively conveying in-

ormation about the clustering hierarchy is crucial for efficient
ierarchical exploration (Gortler et al., 2018). Various visualiza-

tion techniques have been developed to represent hierarchical
tructures, which can be categorized as explicit or implicit (Schulz
t al., 2011). Explicit methods, such as node-link diagrams, il-
ustrate the hierarchy through nodes connected by edges. On
he other hand, implicit methods focus more on displaying the
odes and the information they carry, representing the hierarchy
hrough encapsulation relationships, such as treemaps. In this
aper, since we need to represent the size of tree nodes to reflect
he number of ensemble members they contain, we choose an
mplicit method. However, treemap layouts can be too compact,
eading to challenges in interaction and decreased interpretation
ffect of the hierarchical structure. Hence, we utilize the bubble
ree visualization (Gortler et al., 2018), which strikes a balance
etween layout compactness and the interpretation effect of the
ierarchy, while also facilitating hierarchical interaction.
 f
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Fig. 5 illustrates the visual encoding of the bubble tree. Cir-
cular bubbles represent the leaf nodes of the hierarchical tree,
with their encapsulation relationships indicating the hierarchical
structure. The color of the bubbles encodes the classification in-
formation of the isocontour clusters, using the same color scheme
as the visual abstraction element of the isocontour band. The
size of the bubbles encodes the number of ensemble members
contained in the leaf node clusters, reflecting the probability in-
formation of the corresponding forecasts as indicated by Molteni
et al. (1996).

We provide support for flexible switching to any level by
clicking on the blank area of the bubble tree. When a level is
selected, the leaf node bubbles contained will be highlighted,
while the rest will be grayed out. As the levels are switched
on the bubble tree, the visual abstraction of isocontour clusters
at that level will be reconstructed. We establish a link between
the two views by ensuring consistency in color channels and
ierarchical relationships between the isocontour clusters and
he bubble tree. To preserve the details of the isocontours, the
socontour band view directly displays the original isocontours
hen the user clicks on a leaf node bubble.
We choose to switch levels through the bubble tree instead of

directly clicking on the clusters in the isocontour band view. The
bubble tree provides an overview of the hierarchical structure,
allowing users to switch to any level, rather than being limited
to adjacent levels. The highlighted portion also helps users un-
derstand the position of the current cluster level as a whole.
Furthermore, the isocontour band alone cannot convey the num-
ber of ensemble members it contains, whereas the bubble tree
provides this additional information. By utilizing the hierarchical
interaction of the bubble tree and the synchronized switching of
the isocontour band view, users can progressively explore both
the overall trend and the detailed distribution of isocontours.

6. Evaluation

To evaluate the utility, effectiveness, and usability of our
ethod, we conducted case studies, quantitative assessments,
nd expert evaluations using real-world weather forecast data.
he data was sourced from the TIGGE archive (Swinbank et al.,

2016), which is commonly utilized in ensemble forecasting stud-
es. Specifically, we utilize ensemble data of the geopotential
eight field at 500 hPa, consisting of 50 perturbed members. Our
ample region covers 9◦ E to 160◦ E and 3◦ N to 85◦ N, with a
spatial resolution of 0.5◦

× 0.5◦. The forecast used in this paper
starts at 16:00 UTC 18 January 2019. The closest work to ours
is proposed by Ma and Entezari (2019), which has significant
differences as discussed in Section 1. It offers limited support for
sovalue selection, whereas our method samples a small number
f representative isovalues from all optional isovalues, reducing
he burden on users to navigate through numerous options.
or visualization, our bubble tree offers both an overview and
etailed exploration of multiple cluster levels, compared to the
ode plot. Additionally, we mitigate the visual clutter of the
paghetti plot they adopt by integrating the confidence band.
hus, we decided to evaluate the core aspects of our method and
eflect the benefits of these improvements in our evaluation.

6.1. Case studies

To demonstrate the practical application and the utility of our
method, we conduct a series of experiments using the above
eather forecast ensemble dataset. We select two representa-
ive cases for isovalue selection and isocontour exploration re-
pectively. In the first case, we compare our method with uni-
orm downsampling and ensemble mean and standard deviation
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plots to validate its capability in selecting more comprehen-
sive and accurate structural features of key contours. In the
second case, we apply the hierarchical exploration visualization
to c data with varying dispersions to verify the utility of our
method in obtaining and analyzing the variability information of
isocontours.

6.1.1. Isovalue selection
We select the dataset with a forecast lead time of 180 h. The

aseline methods used are the uniform downsampling spaghetti
lot and the ensemble mean and standard deviation plot.
Applying the method proposed in Section 4 to the dataset, we

btain Fig. 6(a–c), named group-a. The L-method results in 30
ey-isovalues, with each view displaying 10 sets of isocontours.
dditionally, we extract 30 sets of isocontours using uniform
ownsampling on the same dataset, which yielded Fig. 6(d–f),
amed group-b. The construction of group-b views follows the
ame approach as group-a, with adjacent three isovalues dis-
layed in three views. A comparison between these two groups
f views reveals that group-b’s isocontours are more concentrated
n the northern region, resulting in excessive rendering and visual
lutter due to intersecting and interfering isocontours. In contrast,
roup-a presents fewer isocontours in the northern region but
isplays more discernible structural features, such as E1, E3, and
5. Most of the structures depicted by group-b in the northern
egion can be inferred from the limited structures in group-a,
ndicating redundant information in group-b. Moreover, group-a
depicts more contour structures in the southern region, specifi-
ally for features E2 and E4, displaying more isocontours in all
three views compared to group-b. On the other hand, feature
E6 represents a fragmented part of the blue isocontour set, and
feature E7 represents a portion of the green isocontour set, but
they are difficult to identify in group-b.

Traditionally, the ensemble mean and standard deviation plots
are used to guide users in selecting isovalues. Fig. 7 illustrates
he mean and standard deviation plot created using the same
ata. The mean of ensemble members is mapped as isocontours,

while the standard deviation of ensemble members’ values at
each grid point is represented by the background color. Users
typically select isovalues based on the amount of high standard
deviation regions crossed by the isocontours. However, in regions
with steep gradients, even small displacements can lead to large
standard deviations, making it challenging to fully represent the
variability of the isocontours using this approach. For instance,
region E1 in Fig. 7(a) exhibits a high standard deviation, but
the range of variability for the isocontours in the same position
in Fig. 7(b) is smaller. In the E2 region of Fig. 7(b), the purple
socontours demonstrate greater variability, whereas this vari-
tion is not easily observed in the same position in Fig. 7(a).
hese limitations hinder meteorological experts from effectively
 t
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selecting key-isovalues based on the variability of isocontours.
In contrast, our method provides intuitive visual guidance for
isovalue selection while minimizing information loss.

6.1.2. Isocontours exploration
To illustrate the exploration of isocontours under different

ariabilities, we selected datasets with an isovalue of 5412 m and
forecast lead times of 180 h and 60 h.

For the 180 h forecast lead time, the isocontours exhibit higher
ispersion. We set Ncluster = 12 and Nbranch = 3 to obtain

Fig. 8(a–b). Fig. 8(a) shows the structure of isocontour clusters
at the first level of the hierarchical tree. It includes three clusters
represented by different colors: orange, purple, and green. The
range and purple clusters represent the two major trends, while
he green cluster represents the outlier. During the hierarchical
lustering process, the outlier data points are merged into clus-
ers at a later stage, allowing users to quickly identify outlier
isocontours initially. By comparing the number and size of the
range and purple bubbles, we can conclude that the orange
luster contains more ensemble members than the purple cluster,
ndicating a higher likelihood of the isocontour corresponding to
sovalue 5412 m being distributed in the vicinity of the orange
luster. With this view, users can easily capture the differences
etween the orange and purple clusters, mainly concentrated in
egion A. Once users understand the spatial distribution within
ach cluster and the differences between clusters, they can click
n the corresponding hierarchy structure in the bubble tree to
witch to any branch of interest. In this case, the user selects the
range cluster to further explore the details. Fig. 8(b) shows that
his cluster is divided into three finer-grained clusters, with the
green cluster exhibiting significant differences from the orange
and purple clusters in region B. The green cluster is located
further north in region B. These detailed differences are not
easily discernible in the visual abstraction of Fig. 8(a) but become
apparent after user interaction.

For the 60 h forecast lead time, the isocontours exhibit higher
oncentration. We set Ncluster = 6 and Nbranch = 2 to obtain
Fig. 8(c–d). Fig. 8(c) and Fig. 8(d) depict the variability of iso-
ontours when ensemble members have lower dispersion at an
arlier forecast time. At this time, there are major differences in
he purple and green clusters only in region C. Compared to the
80 h forecast, although representing the isocontour correspond-
ng to the same isovalue, the spatial variability range narrows,
nd the distribution becomes more concentrated. This indicates
ower uncertainty and higher confidence in the forecast.

The above analysis results demonstrate that the interactive
isualization method designed in this paper effectively supports
sers in obtaining detailed differences, variability ranges, major
rends, and outliers in ensemble isocontours.
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Fig. 6. Comparison of our method (a–c) and uniform downsampling (d–f) for isovalue selection. The isocontours are from the geopotential height field at 500 hPa
f the TIGGE dataset.
Fig. 7. Analogous to Fig. 6. Comparison of the ensemble mean and standard deviation plots (a) and our method (b) for isovalue selection.
e

6.2. Quantitative assessments

This section provides quantitative assessments of the effec-
tiveness of our method in terms of information loss and visual
lutter. We begin with the experimental results of downsampling
alculation and information loss curve to validate the capability of
ur method in selecting key-isovalues while controlling informa-
ion loss. Subsequently, we compare and evaluate the spaghetti
lot with our method to verify its capability to overcome visual
lutter.

6.2.1. Downsampling results and information loss curve
To analyze the characteristics of the proposed key-isovalue

selection method, we perform calculations on the downsam-
ling results and information loss curve using the data from
66
Section 6.1.1, as illustrated in Fig. 9. The downsampling results
provide insights into the relationship between the selected iso-
values, the sampling number, and the dissimilarity of isovalues.
On the other hand, the information loss curve demonstrates the
xtent to which the isocontours corresponding to the selected

isovalue preserve the original ensemble contour features. Fig. 9(a)
illustrates the isovalue selection under different sampling num-
bers. Certain isovalues are consistently selected across various
sampling numbers, indicating their representativeness and im-
portance. The information loss, as shown in Fig. 9(b), exhibits an
initial sharp decrease followed by a gradual decline. This indi-
cates that our downsampling method achieves significant gains
with each additional sampling number. Fig. 9(b) also demon-
strates the result of the L-method, with two straight lines fitted
to the curve, determining the optimal sampling number as 30.
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Fig. 8. Hierarchical exploration visualization of an ensemble of 5412 m geopotential height isocontours at 500 hPa. When the time-steps are 180 h (a–b) and 60 h
(c–d), respectively, we used different hierarchy parameters for plotting.
Fig. 9. Isovalue selection (a) and information loss (b) with different sampling numbers and average dissimilarity curve (c) for the example shown in Fig. 6.
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This number is considerably smaller than the initial 256 isoval-
ues in the value range. In Fig. 9(c), the dissimilarity curve is
displayed, with green dots highlighting the isovalues that are
inally sampled. The distribution of these green dots reveals a
onlinear sampling process. More isovalues are selected in re-
ions with higher dissimilarity, allowing for the inclusion of more
nique isocontours. Within each local region, the most similar
oints are chosen, effectively representing the nearby isocon-
ours. Fig. 9(a) and Fig. 9(c) exhibit shape consistency because
he dissimilarity curve indicates the uniqueness of the isocon-
ours, and the probability of selection aligns with this curve. By
electing representative key-isovalues based on the determined
ptimal sampling number, we achieve control over information
oss. The visual information of the isocontours corresponding to
hese key-isovalues is presented to guide users in their selections.
 a
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6.2.2. Visual clutter of isocontour exploration
Current literature (Sanyal et al., 2010; Ferstl et al., 2016b;

Whitaker et al., 2013; Zhang et al., 2023) overcome the visual
clutter in spaghetti plots by employing visual abstractions. How-
ever, none of these studies have quantitatively assessed the effec-
iveness of overcoming visual clutter, particularly when multiple
abstract visual elements are superimposed and challenged by
the increasing size of ensemble forecast members. To solve this
problem, we adopt the Feature Congestion measure proposed
by Rosenholtz et al. (2007) to comparatively and quantitatively
assess the visual clutter of spaghetti plots and our method under
ifferent numbers of ensemble members using the data from
ection 6.1.2.
To evaluate the visual clutter, we progressively increased the

number of ensemble members from 1 to 51, adding 2 members
t a time. We generated two groups, each containing 26 views,
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named group-italy and group-cluster. Both groups removed the
background to avoid interference. In the group-cluster, the 51
ensemble members are pre-clustered into 4 clusters, and the
corresponding visual elements are drawn during the view genera-
tion process based on the currently involved ensemble members,
avoiding re-clustering for each additional member. The views in
the group-cluster may contain 1 to 4 clusters; if a cluster does
not have any participating members, it is not displayed.

Fig. 10 presents the results of the quantitative assessment. The
isual clutter in the group-cluster is significantly lower compared

to group-italy. As the size of ensemble members increases, the
visual clutter in group-italy continues to rise, while the group-
cluster remains relatively stable, with only a slight increase when
a new cluster appears in the view. Another interesting observa-
tion is that the rate of increase in visual clutter slows down for
group-italy as the size of ensemble members further increases.
This can be attributed to the fact that with more overlap isocon-
tours, the problem of overplotting becomes more severe. Visually,
the overplotted view tends to be perceived as a texture with
scattered dots, making it challenging for observers to interpret
he geometric structure of the isocontours. Overall, these find-
ngs validate the effectiveness of our visualization method in
vercoming visual clutter.

6.3. Expert evaluation

We conduct in-depth open-ended interviews with 8 experts (3
emales and 5 males, with an average experience of 13.6 years)
68
from the meteorological industry. These interviews aim to gather
their feedback on our approach, confirm its usability, and identify
potential application scenarios. Among them, three experts (P1–
P3) are involved in the method design process in Section 3,
hile other experts (P4–P8) use our method for the first time.
4 is a senior engineer with 8 years of experience in weather
orecast system development. Both P5 and P6 are forecasters who
requently use weather forecast visualization tools with 9 and
5 years of experience, respectively. P7 and P8 are meteorologists
pecializing in climatology for 12 and 18 years, respectively.
During the interviews, we first provide a brief overview of our

esearch background and focus to the experts. We then demon-
trate the usage process and visual design of our method using
he two case studies presented in Section 6.1. Next, experts are
sked to freely explore the data described in Section 6 using

our method, with encouragement to share their thoughts and
opinions during the exploration process, which is collected by us.

In general, the experts highly praise our method, particularly
n isovalue selection and interactive isocontour exploration, as
hey recognize its relevance to practical meteorological work. We
ummarize their feedback in the following three aspects.

Method design: The experts find the visualization design of our
method to be intuitive and easy to understand and use. Despite
introducing a new visual abstraction element, the isocontour
band, it remains consistent with their previous experience using
spaghetti plots. Expert P5 comments on the transferability of
usage experience, ‘‘Common ensemble forecast platforms currently
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provide visual tools like spaghetti plots and ensemble mean and stan-
dard deviation plots, making it easy for meteorological professionals
to transfer their usage experience to this method.’’ Expert P2 high-
lights the value of the design from a visualization perspective,
‘‘The design, whether downsampling or visual abstraction, essentially
presents a subset of the most valuable information when the in-
formation overload exceeds the user’s capacity, thereby stimulating
further exploration. We often adopt this approach when designing
other visualization methods. The key is to determine what is the
most valuable information for the user, and this method does a good
job of that based on meteorological expert needs.’’ Expert P4 adds,
‘‘There is a strong correlation between key-isovalue selection and
hierarchical exploration visualization, which can form a more com-
plete workflow and have practical value.’’ Expert P6 proposes an
improvement, ‘‘The current method requires the manual setting of
two hierarchical structure parameters to handle isocontours with dif-
ferent dispersions. In the future, it can be enhanced to automatically
generate these parameters.’’

Method usability: Expert P3 comments on isovalue selec-
ion, ‘‘This method selects key-isovalue based on the uniqueness
nd representativeness of the contour structure corresponding to
hose isovalues, which is reasonable and effective. This is particularly
rue in scenarios where prior knowledge about specific isovalues
s lacking.’’ Expert P7 expresses a keen interest in interactive
hierarchical exploration visualization, believing that it could help
overcome the limitations of existing visualization tools when
dealing with a large size of ensemble members. This feature
facilitates the observation and analysis of differences in isocon-
tours among different forecast members. Expert P1 notes, ‘‘This
visualization method helps forecasters interpret ensemble forecast
products and can be used in conjunction with other visualization
applications currently deployed by meteorological administration to
create user-friendly products for forecasters.’’ They express hope
that this visualization method could be deployed and tested in
meteorological administration, suggesting further collaboration.
xpert P8 proposes, ‘‘In fact, this visualization method can also be
pplied to other studies, such as streamline visualization of wind
ields and visualization of typhoon paths. It can be considered to
xtend this method from a broader research perspective beyond
socontours.’’

Application scenarios: Through discussions with domain ex-
perts, we identify several valuable application scenarios for our
visualization method. These include: (1) Assisting meteorological
professionals in observing isocontours of subtropical high, iso-
hyets, and isotherms, and combining them with other tools to
xplain the uncertainty of weather forecasts for high tempera-

tures, droughts, and heavy rainfall. (2) Enabling meteorological
professionals to analyze the influence of specific topography, such
s the Qinghai-Tibet Plateau, on the trends of various isocon-
ours. (3) Assisting meteorological professionals in comparing the
pecific spatial distribution differences among ensemble forecast
embers, evaluating the predictive performance of each member
ased on historical data, and reconstructing forecasts by selecting
ptimal members or integrating various products to improve
he performance of ensemble forecasts. In these scenarios, our
roposed method can help meteorological professionals visually
nd comprehensively observe and explore the features of vari-
us isocontours in ensemble data, supporting further analysis by
ombining their domain expertise with other statistical analysis
ools.

7. Discussion

Although the utility, effectiveness, and usability of the pro-
osed method have been validated in our evaluation, there are

still some limitations in this paper considering the challenges
 M

69
of ensemble data visualization. Based on the evaluation results,
e believe there is room for improvement in the following two
spects:
Contour probability similarity: Considering computational

efficiency, we used Jensen–Shannon divergence to calculate the
similarity of contour probabilities. However, when two probabil-
ity distributions have no overlap, the Jensen–Shannon divergence
becomes a constant. Therefore, for regions with smaller contour
variations, the computed similarity may differ from the perceived
similarity by the human eye. In the future, we plan to strike a
balance between computational efficiency and similarity accuracy
by developing a similarity measure that aligns more closely with
human intuition, while still maintaining an acceptable computa-
tional cost. This will contribute to the improvement of the above
situation.

Visual channel of isocontour bands: When exploring the
hierarchical structure of isocontour clusters, the color channel
changes with different levels of isocontour bands, which requires
users to adapt to the new visual information. In the future, we
plan to implement smooth animation interpolation using signed
distance fields. Additionally, the overlapping of isocontour bands
leads to color blending, making it challenging for users to dis-
tinguish between different clusters. We plan to scatter pixels in
the overlapping regions with the same color as their respective
clusters, thus enhancing their discriminability.

8. Conclusion

In this paper, we propose a novel approach to achieve key-
isovalue selection guided by contours and hierarchical explo-
ation of isocontour clusters in 2D scalar field ensembles. Our
ethod involves extracting contour probabilities for each median

sovalue by partitioning the value range of the scalar field. We
hen perform non-uniform downsampling based on the similarity
f these contour probabilities to select representative samples
f isocontours. This guides users in isovalue selection. Simul-
aneously, we automatically determine the optimal downsam-
ling number using an information loss curve, ensuring a balance

between selection efficiency and information preservation. To
construct visual abstractions of isocontour clusters, we introduce
a novel visualization based on agglomerative hierarchical cluster-
ing. It allows for flexible switching between different levels of
visual abstraction, enabling users to explore detailed information.
By balancing the conflicting requirements of summarization of
visual abstraction and preservation of detailed information, our
approach provides an intuitive understanding of the variability
evolution of weather forecast ensembles. Our case studies, quan-
titative assessments, and expert evaluations reveal the utility,
effectiveness, and usability of our approach. In future work, we
plan to extend our method from analyzing ensemble isocontours
at individual time points to analyzing the temporal evolution
of ensemble isocontours over a period suggested by our ex-
pert participants. This extension will enhance the applicability of
our approach and enable a more comprehensive analysis of the
uncertainty and confidence of ensemble isocontours.
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